首页 > 科技 > 正文

什么是大型强子对撞机?为什么杨振宁反对中国建造超级对撞机?

2019-11-08 10:16:08 来源: 阅读:1
评论(0 收藏(0
 数十年来,前沿物理学的研究已经离不开高能粒子对撞机。高能粒子对撞机能把粒子加速到接近光速的极快速度,然后使这些粒子互相碰撞,由此来研究粒子的结构,并寻找新的粒子。

目前,世界上最强大的高能粒子对撞机——大型强子对撞机(LHC)已经开机运行了10年,期间它取得了很多重大发现,最具代表性的是在2012年找到了半个世纪前理论预言的希格斯玻色子,这被认为是粒子物理标准模型的最后一块拼图。此外,LHC还能用于研究宇宙最早期的状态。鉴于此,我国物理学家也提出希望建造出一台超级对撞机——环形正负电子对撞机(CEPC),它将超越LHC,让我国的基础物理学研究能够引领世界。

在这个加速器里面,2束高能粒子流在彼此相撞之前,以接近光速的速度向前传播。这两束粒子流分别通过不同光束管,向相反方向传播,这两根管子都处于超高真空状态。一个强磁场促使它们围绕那个加速环运行,这个强磁场是利用超导电磁石获得的。这些超导电磁石是利用特殊电缆线制成的,它们在超导状态下进行操作,有效传导电流,没有电阻消耗或能量损失。要达到这种结果,大约需要将磁体冷却到零下271℃,这个温度比外太空的温度还低。由于这个原因,大部分加速器都与一个液态氦分流系统和其他设备相连,这个液态氦分流系统是用来冷却磁体的。

大型强子对撞机利用数千个种类不同,型号各异的磁体,给该加速器周围的粒子束指引方向。这些磁体中包括15米长的1232双极磁体和392四极磁体,1232双极磁体被用来弯曲粒子束,392四极磁体每个都有5到7米长,它们被用来集中粒子流。在碰撞之前,大型强子对撞机利用另一种类型的磁体“挤压”粒子,让它们彼此靠的更近,以增加它们成功相撞的机会。这些粒子非常小,让它们相撞,就如同让从相距10公里的两地发射出来的两根针相撞一样。

这个加速器、它的仪器和技术方面的基础设施的操作器,都安装在欧洲粒子物理研究所控制中心的同一座建筑内。在这里,大型强子对撞机内的粒子流将在加速器环周围的4个区域相撞,这4个区域与粒子探测器的位置相对应。

大型强子对撞机产生的能量是其他粒子加速器以前都无法达到的,但是自然界中的宇宙光相撞产生了更高的能量。多年来,这种高能粒子相撞产生的能量的安全性问题,一直备受关注。据新实验数据和对相关理论的新认识显示,大型强子对撞机安全评估团已经重新校正了该团在2003年做出的一份调查分析。这个安全评估团由中立派科学家组成。

2003年,有关报告称大型强子对撞机碰撞不存在风险,因此没理由对安全问题过多关注。现在大型强子对撞机安全评估团对这些结论进行了重新审定和补充。不管大型强子对撞机将要做什么,自然界在地球和其他天体的一生中,已经这样做了很多次。欧洲粒子物理研究所科学政策委员会已经重新审查了大型强子对撞机安全评估团的报告,并对该团的观点表示赞成。欧洲粒子物理研究所科学政策委员会是由为欧洲粒子物理研究所的主管团体——董事会提建议的院外科学家组成。欧洲粒子物理研究所总结出的主要论据,可支持大型强子对撞机安全评估团的论文观点。任何对更多细节感兴趣的人,都被鼓励直接商讨这个问题和它涉及的技术科学论文。

宇宙射线

跟其他粒子加速器一样,大型强子对撞机在受控实验室环境中重新再现了宇宙射线的自然现象,这使科学家能对宇宙射线进行更加详细的研究。宇宙射线是外层空间产生的粒子,其中一些粒子通过加速,产生的能量远远超过了大型强子对撞机产生的能量。在大约70年的实验中,宇宙射线传播到地球大气层的能量及速度都已经被监测到。在过去的数十亿年间,地球上的自然界内发生的粒子撞击次数,已经相当于大约100万次大型强子对撞机实验,可是至今地球仍然存在。天文学家在宇宙中观测到大量体积更大的天体,它们都受到宇宙射线轰击。宇宙的运行情况,就如同像大型强子对撞机一样的实验每秒运行超过数百亿次。任何危险结果的可能性与天文学家看到的现实相矛盾,因为至今恒星和星系仍然存在。

微型黑洞

当比我们的太阳更大的特定恒星在生命最后阶段发生爆炸时,自然界就会形成黑洞。它们将大量物质浓缩在非常小的空间内。假设在大型强子对撞机内的质子相撞产生粒子的过程中,形成了微小黑洞,每个质子拥有的能量可跟一只飞行中的蚊子相当。天文学上的黑洞比大型强子对撞机能产生的任何东西的质量更重。据爱因斯坦的相对论描述的重力性质,大型强子对撞机内不可能产生微小黑洞。然而一些纯理论预言大型强子对撞机能产生这种粒子产品。所有这些理论都预测大型强子对撞机产生的此类粒子会立刻分解。因此它产生的黑洞将没时间浓缩物质,产生肉眼可见的结果。

虽然稳定的微小黑洞理论站不住脚,但是研究宇宙射线产生的微小黑洞结果显示,它们没有危害。大型强子对撞机内发生的撞击,与地球等天体和宇宙射线发生碰撞不同,在大型强子对撞机内的碰撞过程中产生的新粒子,一般比宇宙射线产生的粒子的运行速度更加缓慢。稳定的黑洞不是带电,就是呈中性。不管是宇宙射线产生的粒子,还是大型强子对撞机产生的粒子,如果它们带电,它们就能与普通物质结合,这个过程在粒子穿越地球时会停止。地球依然存在的事实,排除了宇宙射线或大型强子对撞机可产生带电且危险的微小黑洞的可能性。如果稳定的微小黑洞不带电,它们与地球之间的互动将非常微弱。宇宙射线产生的那些黑洞可以在不对地球造成任何危害的情况下穿过它,进入太空,因此由大型强子对撞机产生的那些黑洞也可继续停留在地球上。然而,宇宙中有比地球更大更密集的天体。宇宙射线与中子星或白矮星等天体相撞产生的黑洞可处于休眠状态。地球等这种致密体继续存在的事实,排除了大型强子对撞机产生任何危险黑洞的可能性。

奇异微子与‘天使粒子’

奇异微子是针对一种假设的微小“奇异物质”产生的术语,奇异物质包含几乎与奇异夸克数量一样的粒子,‘天使粒子’则是探索‘马约拉纳费米子’一种正负粒子同体的‘独立’粒子晶格。据理论成分最高的研究显示,奇异微子在一百万分之一千秒内,能转变成普通物质。但是奇异微子能否与普通物质结合,变成奇异物质?2000年相对论重离子对撞机(RHIC)在美国第一次出现时,人们提出了这个问题。当时的一项研究显示,人们没有理由关注这个问题,现在相对论重离子对撞机已经运行8年,它一直在寻找奇异微子,但是至今仍一无所获,奇异微子也许是一种重质量的‘惰性中微子’的存在。有时大型强子对撞机就像相对论重离子对撞机一样,需要通过重核子束运转。大型强子对撞机的光束拥有的能量将比相对论重离子对撞机的光束拥有的能量更多,但是这种情况使奇异微子形成的可能性更小。就像冰不能在热水中形成一样,像这种对撞机产生的高温,很难让奇异物质结合在一起。另外,夸克在大型强子对撞机中比在相对论重离子对撞机中更加微弱,这使它很难聚集奇异物质。因此在大型强子对撞机内产生奇异微子的可能性,比在相对论重离子对撞机内更小。这个结果已经证实奇异微子不会产生的论点。

真空泡沫

曾有推测认为,现在宇宙没处在它最稳定的状态,大型强子对撞机产生的微扰将能让它进入更加稳定的状态,这种状态被称作真空泡沫,在这种状态下人类将不复存在。如果大型强子对撞机确实能做到这些,难道宇宙射线碰撞就无法达到这种效果吗?由于目前在肉眼可见的宇宙中的任何地方都没产生这种真空泡沫,因此大型强子对撞机将不能产生这种物质。

磁单极子

磁单极子是假设中带单极性磁荷的粒子,每个只拥有北极或南极。一些纯理论指出,如果它们确实存在,磁单极子将导致质子消失。这些理论还表示,这种磁单极子因为太重,根本无法在大型强子对撞机内产生。然而,如果磁单极子的重量足以在大型强子对撞机内出现,宇宙射线撞击地球大气层早就该产生这种物质了,如果它们确实存在,地球能非常有效地阻止并捕获它们,现在人们应该已经发现它们。地球和其他天体继续存在的事实,排除了能吞噬质子的危险磁单极子的重量足够轻,可以在大型强子对撞机内产生的可能性。

模拟爆炸

2010年11月8日,科学家们开始利用位于瑞士和法国边境的欧洲大型强子对撞机制造小型“宇宙大爆炸”,模拟近140亿年前宇宙形成的瞬间过程。

这是该机器第一次使用铅离子进行对撞,以往实验均使用质子。铅离子和质子统称“强子”,但前者比后者更大、更重。8日开始的实验取名为“爱丽丝”(ALICE),是“大强子对撞实验”的英文缩写。实验第一阶段任务将于今年12月完成。

在全长约27公里的环形轨道内部,两束铅离子束流朝着相反的方向前进,它们每运行一圈,就会获得更多的能量,速度也随之增加。对撞瞬间产生的高温相当于太阳核心温度的10万倍,即10万亿度。据信这个温度就是137亿年前宇宙大爆炸刚刚发生后百万分之几秒内的温度。在这一温度下将产生“夸克—胶子等离子体”。现有物理学理论认为,宇宙诞生后的百万分之几秒内,宇宙中曾存在过一种被称为“夸克—胶子等离子体”的物质。科学家们希望通过迷你“宇宙大爆炸”实验,解开宇宙形成之谜。

近日,中国宣称要建造世界上最大的大型强子对撞机,其规模要超越LHC,但是对于这一建造计划,国际知名的美籍华裔物理学家杨振宁先生曾经是不太支持的。

但是王义芳坦言项目的施工可能会从2022年开始,如果世界各地的朋友感兴趣的话,只要项目进程顺利,到2030年进行开放是没有问题的。

中国将要建造的对撞机规模可长达100公里,中国的超级粒子对撞机一旦问世,绝对就是世界上最大的粒子对撞机了,不过从造价方面来看,中国对于对撞机技术的研发却是后来居上,因为我国的对撞机造价只是欧洲强子对撞机的一半而已,而我们设备的规模却将近他们的四倍。

然而,杨振宁教授对此反对的原因是性价比。

通常建造这种大型对撞机的预估经费是不够的,极有可能要追加投入。而且建成之后,每年还要投入大量的资金用于设备维护。

中国大型对撞机就像资金黑洞,会把大量的科研经费吸进入,以使其他等待资金投入的科研领域变得捉襟见肘。即便如此巨大的资金投入,在短时间内,中国粒子对撞机也不一定能够取得重大的发现。现在的理论物理学还没有取得实质性的突破,不能给实验指示一个明确的方向,耗费这么多的资金只是去搏一把。

其实对于本项目的建设计划,反对声和赞成声是持平的。对此,你有什么意见和看法呢?
来源:凤凰网                     时间:2018年12月10日

有时,看似一桩小事却足以让你抓狂。20世纪初,牛顿发现万有引力并完美解释了一系列现象,麦克斯韦写出了漂亮的电磁方程组,有一段时间,物理学家们似乎认为物理学的框架已经基本建立完成,接下来只是些零碎的修补工作而已。但是重视现实的开尔文提出物理学上空的两片“乌云”,这引发了一场科学革命。其中一片“乌云”就是热学中的能量均分定理在气体比热以及热辐射能谱的理论解释中得出与实验不等的结果,其中尤以黑体辐射理论出现的“紫外灾难”最为突出。

粒子物理学和量子力学的研究对象都是微观粒子,这类研究方向的物理学家发现了两种基本作用力和许多奇怪的基本粒子。但是在上世纪70年代之前,物理学家对微观粒子的认识还只是停留在已发现的上百种粒子上,他们的工作也只是检验和完善标准模型--占有主导地位的理论。30年后,物理学家利用加速器和对撞机发现亚原子微粒,这很重要。不过还存在着许多问题:为什么有些粒子有质量,而有些质量为零?四大基本作用力能够统一起来吗?广义相对论和量子力学之间的矛盾能消除吗?

这些尚未解决的问题是否又会引发另一场革命?要想找到答案,我们需要更强大的粒子对撞机,例如,周长为16.8英里(27公里)的内部温度低于外界温度的超导磁体环,还要能够在超高真空以接近光速的速度撞击粒子。2008年9月10日,这个耗资100亿美元的大型强子对撞机(Large Hadron Collider ,简称LHC),由全球数百名科学家和工程师共同努力完成,联合欧洲核子研究中心(European Organization for Nuclear Research ,简称CERN),很快打破了粒子碰撞的记录。

让我们回顾一下研究人员通过这个大型强子对撞机的研究成果,从最著名的开始。

希格斯玻色子

在宏观世界里,我们假设所有尺寸的粒子都有质量。但是在微观世界中,电弱统一理论将电磁力和弱相互作用力统一为一种隐形的力,预测称为介质的特殊粒子不应该有质量,但是问题出在其实有些粒子确实有质量。

介质是力的载体。光子其实就是电磁波在空间中的传播,可以和其他粒子发生电磁相互作用,W和Z玻色子传递弱相互作用力。不过,光子是没有质量的,而根据欧洲核子研究中心,W和Z玻色子的质量差不多等价于100个质子的质量总和。

1964年,爱丁堡大学(University of Edinburgh)的物理学家彼得·希格斯(Peter Higgs)和弗朗索瓦·恩格勒(Francois Englert)以及布鲁塞尔自由大学(Free University of Brussels)的罗伯特·布里特(Robert Brout)团队分别独立地提供一个解答(后称为希格斯机制):假设存在这样一个特殊的场,也称希格斯场,粒子与场的相互作用程度决定了粒子传递的有效质量。如果希格斯场确实存在,那应该有介质粒子——希格斯玻色子,但是需要像大型强子对撞机这样的设备来检测这个粒子的存在。

2013年,物理学家证实希格斯玻色子的存在,其质量约为126千兆电子伏特,也相当于126个光子质量总和。由于质能等价性,物理学家有时候也使用电子伏特作为质量的单位。这个结论不仅改写了相关的参考书,还为研究宇宙的稳定性开辟了全新的研究领域。比如,为什么宇宙中的物质远多于反物质,以及暗物质的组成和丰度。

重四夸克态

1964年,两名研究人员在试图理解强子(参与强相互作用的基本粒子)——强相互作用下的亚原子粒子时,他们独立提出了相同的观点,即亚原子粒子是由三种类型的粒子组成的。乔治·茨威格(George Zweig)给它起名为艾斯(Aces), 默里·盖尔曼(Murray Gell-Mann)称之为夸克,三种夸克中两种同位旋为1/2,另一种同位旋为0。在同位旋为1/2的两种中,同位旋向上的,称为上夸克(up);同位旋向下的,称为下夸克(down);同位旋为零的则称为奇异夸克(strange)。后来物理学家又发现另外三种夸克,并分别命名为粲夸克(charm)、顶夸克(top)和底夸克(bottom),每个夸克有红、绿、蓝三味。

多年以来,物理学家一直根据夸克的制造方式将强子分为两类:由三夸克组成的重子(包括质子和中子)和由夸克-反夸克对组成的介子(如π介子和k介子)。但是这些是唯一可能的组合吗?

2003年,日本的研究人员发现了一种奇怪的粒子——X(3872),似乎是由一个粲夸克、一个反粲夸克和其它两种以上的夸克组成的。在探索粒子是否存在的同时,研究人员还发现了Z(4430),这明显是一个四夸克粒子。后来,大型强子对撞机还发现了数个证明这些粒子存在的证据,这和已经建立的夸克排列模型相悖,至少有点矛盾。这样的Z粒子是转瞬而逝的,可能在大爆炸后微妙内出现过。

未被证实的超对称性

理论学家提出了超对称性,简称SUSY,用来处理一些标准模型无法得到解答的问题,比如,为什么一些基本粒子有质量?如何将电磁和强弱核力联系在一起?暗物质是有什么组成的?另外,超对称性还在夸克和轻子之间就如何构成物质建立了一定的关系,而玻色子则是它们之间相互作用的媒介。就像前面提到的重子一样,轻子(如电子)属于一种亚原子粒子,称为费米子,和玻色子的量子特性相反。然而,根据超对称性的说法,每个费米子都对应着一个玻色子,反之亦然,每个粒子都可以转化成它对应的粒子。

如果这是真的,那么超对称性就意味着两种基本粒子类型(费米子和玻色子)只不过是同一枚硬币的两面。如果让对应的粒子相互抵消,数学中的某些无法控制的无穷量可以消去。另外,标准模型对地心引力的解释也有明显的漏洞,因为费米子和玻色子之间的转换可能涉及到引力子,引力子早期就由物理学家提出作为地心引力的载体。

物理学家希望大型强子对撞机能够找到支持超对称性的证据,然后揭示出更深层的问题,这有可能引导新的理论提出,甚至意味着新的实验领域。到目前为止,超对称性在自然界中尚未被观测到。不过,超对称性也有很多版本,每个版本都与特定的假设有关,大型强子对撞机只是选择了形式最优美的版本。

协调运动

欧洲核子研究中心当天的汤是一种夸克-胶子等离子体。

当研究人员校准大型强子对撞机的仪器时,他们一般不进行常用的质子-质子碰撞,而是选择利用质子撞击铅核,这是产生了一个令人吃惊的现象:产生的亚原子碎片通常选用的随机路径被显性协调取代了。

对于这种现象,一种理论认为,质子和铅核之间的撞击导致了一种叫做夸克-胶子等离子体(QGP)的奇异状态产生,它像液体一样流动,并在冷却时产生协调粒子。布鲁克海文国家实验室(Brookhaven National Laboratories)和大型强子对撞机都曾经通过碰撞铅和金等重离子产生出夸克-胶子等离子体——黑洞之外最密集的物质形式。如果由质子引导碰撞产生夸克-胶子等离子体被证明是可能的,那么虽然它在大爆炸之后存在的时间很短暂,但是对后来科学家观测大爆炸之后的宇宙状态的影响十分显著。不过现在的问题是:碰撞释放的能量还不足够制作出假设的夸克汤。

尽管大多数物理学家都赞成这个观点,但还有部分物理学家持反对意见,还提出了一些解释,在胶子创造的理论场中,粒子作为强作用力的载体,将夸克和反夸克变成质子和中子。他们假设,胶子在接近光速的状态下运动形成了这种理论场,夸克和反夸克在场中相互作用形成质子和中子。如果这个假设成立,这个模型倒是可以为质子结构和相互作用提供有价值的见解。

新物理的标志…也许不是

尽管听起来很不合逻辑,但是许多物理学家希望大型强子对撞机能够帮助他们发现标准模型的漏洞之处。毕竟,这个框架确实是存在问题的,也许一两个极为重大的发现便可以证实超对称性,或者至少给出新的研究途径。然而,正如前面所提到的,研究人员在利用大型强子对撞机反复验证标准模型的同时,也对某些奇异的物理现象进行了反复的质疑和打击。当然,结果得来也不是那么容易,还要分析大量的数据。另外,大型强子对撞机还没有完全达到14兆电子伏特(TeV)的能量。这样,标准模型看起来或许并没有很糟糕。

如果2013年关于B介子衰变的报告有任何异样的迹象,他们可能已经展开相关研究了,但是这份报告显示B介子衰变为k介子和两个μ介子(类似电子的粒子),这不会引起任何波动,除非衰变的模式没有遵循标准模型。不幸的是,实验条件还没有达到这项研究的要求,尽管如此,研究人员并没有放弃,他们还在坚持做最后的数据分析。如果成功的话,这种奇特的衰变模式可能会导致新的物理研究方向,这也是很多物理学家一直在寻找的。

更多信息

作者笔记

在大型强子对撞机完成后,有些人想知道如果希格斯玻色子没出现,现在的物理学又会有什么变化?这不仅仅是大规模的原子加速器存在的主要原因,也是限制标准模型适用范围的关键。

现在还有个更大的问题,涉及到第二代宇宙空间外偏振背景成像(BICEP2)测量的宇宙背景辐射。如果观测结果是正确的,那么希格斯场在大爆炸时应该有足够的能量马上进行大收缩。换句话说,如果这两个观点都成立,那我们就不应该争论为什么它们不可能是真的。
来源:百家号                                 时间:17-10-26

推荐阅读:叶紫网