首页 > 文化 > 正文

什么是大型强子对撞机?为什么杨振宁反对中国建造超级对撞机?

2020-01-21 12:29:33 来源: 阅读:1
评论(0 收藏(0

数十年来,前沿物理学的研究已经离不开高能粒子对撞机。高能粒子对撞机能把粒子加速到接近光速的极快速度,然后使这些粒子互相碰撞,由此来研究粒子的结构,并寻找新的粒子。

目前,世界上最强大的高能粒子对撞机——大型强子对撞机(LHC)已经开机运行了10年,期间它取得了很多重大发现,最具代表性的是在2012年找到了半个世纪前理论预言的希格斯玻色子,这被认为是粒子物理标准模型的最后一块拼图。此外,LHC还能用于研究宇宙最早期的状态。鉴于此,我国物理学家也提出希望建造出一台超级对撞机——环形正负电子对撞机(CEPC),它将超越LHC,让我国的基础物理学研究能够引领世界。

在这个加速器里面,2束高能粒子流在彼此相撞之前,以接近光速的速度向前传播。这两束粒子流分别通过不同光束管,向相反方向传播,这两根管子都处于超高真空状态。一个强磁场促使它们围绕那个加速环运行,这个强磁场是利用超导电磁石获得的。这些超导电磁石是利用特殊电缆线制成的,它们在超导状态下进行操作,有效传导电流,没有电阻消耗或能量损失。要达到这种结果,大约需要将磁体冷却到零下271℃,这个温度比外太空的温度还低。由于这个原因,大部分加速器都与一个液态氦分流系统和其他设备相连,这个液态氦分流系统是用来冷却磁体的。

大型强子对撞机利用数千个种类不同,型号各异的磁体,给该加速器周围的粒子束指引方向。这些磁体中包括15米长的1232双极磁体和392四极磁体,1232双极磁体被用来弯曲粒子束,392四极磁体每个都有5到7米长,它们被用来集中粒子流。在碰撞之前,大型强子对撞机利用另一种类型的磁体“挤压”粒子,让它们彼此靠的更近,以增加它们成功相撞的机会。这些粒子非常小,让它们相撞,就如同让从相距10公里的两地发射出来的两根针相撞一样。

这个加速器、它的仪器和技术方面的基础设施的操作器,都安装在欧洲粒子物理研究所控制中心的同一座建筑内。在这里,大型强子对撞机内的粒子流将在加速器环周围的4个区域相撞,这4个区域与粒子探测器的位置相对应。

大型强子对撞机产生的能量是其他粒子加速器以前都无法达到的,但是自然界中的宇宙光相撞产生了更高的能量。多年来,这种高能粒子相撞产生的能量的安全性问题,一直备受关注。据新实验数据和对相关理论的新认识显示,大型强子对撞机安全评估团已经重新校正了该团在2003年做出的一份调查分析。这个安全评估团由中立派科学家组成。

2003年,有关报告称大型强子对撞机碰撞不存在风险,因此没理由对安全问题过多关注。现在大型强子对撞机安全评估团对这些结论进行了重新审定和补充。不管大型强子对撞机将要做什么,自然界在地球和其他天体的一生中,已经这样做了很多次。欧洲粒子物理研究所科学政策委员会已经重新审查了大型强子对撞机安全评估团的报告,并对该团的观点表示赞成。欧洲粒子物理研究所科学政策委员会是由为欧洲粒子物理研究所的主管团体——董事会提建议的院外科学家组成。欧洲粒子物理研究所总结出的主要论据,可支持大型强子对撞机安全评估团的论文观点。任何对更多细节感兴趣的人,都被鼓励直接商讨这个问题和它涉及的技术科学论文。

宇宙射线

跟其他粒子加速器一样,大型强子对撞机在受控实验室环境中重新再现了宇宙射线的自然现象,这使科学家能对宇宙射线进行更加详细的研究。宇宙射线是外层空间产生的粒子,其中一些粒子通过加速,产生的能量远远超过了大型强子对撞机产生的能量。在大约70年的实验中,宇宙射线传播到地球大气层的能量及速度都已经被监测到。在过去的数十亿年间,地球上的自然界内发生的粒子撞击次数,已经相当于大约100万次大型强子对撞机实验,可是至今地球仍然存在。天文学家在宇宙中观测到大量体积更大的天体,它们都受到宇宙射线轰击。宇宙的运行情况,就如同像大型强子对撞机一样的实验每秒运行超过数百亿次。任何危险结果的可能性与天文学家看到的现实相矛盾,因为至今恒星和星系仍然存在。

微型黑洞

当比我们的太阳更大的特定恒星在生命最后阶段发生爆炸时,自然界就会形成黑洞。它们将大量物质浓缩在非常小的空间内。假设在大型强子对撞机内的质子相撞产生粒子的过程中,形成了微小黑洞,每个质子拥有的能量可跟一只飞行中的蚊子相当。天文学上的黑洞比大型强子对撞机能产生的任何东西的质量更重。据爱因斯坦的相对论描述的重力性质,大型强子对撞机内不可能产生微小黑洞。然而一些纯理论预言大型强子对撞机能产生这种粒子产品。所有这些理论都预测大型强子对撞机产生的此类粒子会立刻分解。因此它产生的黑洞将没时间浓缩物质,产生肉眼可见的结果。

虽然稳定的微小黑洞理论站不住脚,但是研究宇宙射线产生的微小黑洞结果显示,它们没有危害。大型强子对撞机内发生的撞击,与地球等天体和宇宙射线发生碰撞不同,在大型强子对撞机内的碰撞过程中产生的新粒子,一般比宇宙射线产生的粒子的运行速度更加缓慢。稳定的黑洞不是带电,就是呈中性。不管是宇宙射线产生的粒子,还是大型强子对撞机产生的粒子,如果它们带电,它们就能与普通物质结合,这个过程在粒子穿越地球时会停止。地球依然存在的事实,排除了宇宙射线或大型强子对撞机可产生带电且危险的微小黑洞的可能性。如果稳定的微小黑洞不带电,它们与地球之间的互动将非常微弱。宇宙射线产生的那些黑洞可以在不对地球造成任何危害的情况下穿过它,进入太空,因此由大型强子对撞机产生的那些黑洞也可继续停留在地球上。然而,宇宙中有比地球更大更密集的天体。宇宙射线与中子星或白矮星等天体相撞产生的黑洞可处于休眠状态。地球等这种致密体继续存在的事实,排除了大型强子对撞机产生任何危险黑洞的可能性。

奇异微子与‘天使粒子’

奇异微子是针对一种假设的微小“奇异物质”产生的术语,奇异物质包含几乎与奇异夸克数量一样的粒子,‘天使粒子’则是探索‘马约拉纳费米子’一种正负粒子同体的‘独立’粒子晶格。据理论成分最高的研究显示,奇异微子在一百万分之一千秒内,能转变成普通物质。但是奇异微子能否与普通物质结合,变成奇异物质?2000年相对论重离子对撞机(RHIC)在美国第一次出现时,人们提出了这个问题。当时的一项研究显示,人们没有理由关注这个问题,现在相对论重离子对撞机已经运行8年,它一直在寻找奇异微子,但是至今仍一无所获,奇异微子也许是一种重质量的‘惰性中微子’的存在。有时大型强子对撞机就像相对论重离子对撞机一样,需要通过重核子束运转。大型强子对撞机的光束拥有的能量将比相对论重离子对撞机的光束拥有的能量更多,但是这种情况使奇异微子形成的可能性更小。就像冰不能在热水中形成一样,像这种对撞机产生的高温,很难让奇异物质结合在一起。另外,夸克在大型强子对撞机中比在相对论重离子对撞机中更加微弱,这使它很难聚集奇异物质。因此在大型强子对撞机内产生奇异微子的可能性,比在相对论重离子对撞机内更小。这个结果已经证实奇异微子不会产生的论点。

真空泡沫

曾有推测认为,现在宇宙没处在它最稳定的状态,大型强子对撞机产生的微扰将能让它进入更加稳定的状态,这种状态被称作真空泡沫,在这种状态下人类将不复存在。如果大型强子对撞机确实能做到这些,难道宇宙射线碰撞就无法达到这种效果吗?由于目前在肉眼可见的宇宙中的任何地方都没产生这种真空泡沫,因此大型强子对撞机将不能产生这种物质。

磁单极子

磁单极子是假设中带单极性磁荷的粒子,每个只拥有北极或南极。一些纯理论指出,如果它们确实存在,磁单极子将导致质子消失。这些理论还表示,这种磁单极子因为太重,根本无法在大型强子对撞机内产生。然而,如果磁单极子的重量足以在大型强子对撞机内出现,宇宙射线撞击地球大气层早就该产生这种物质了,如果它们确实存在,地球能非常有效地阻止并捕获它们,现在人们应该已经发现它们。地球和其他天体继续存在的事实,排除了能吞噬质子的危险磁单极子的重量足够轻,可以在大型强子对撞机内产生的可能性。

模拟爆炸

2010年11月8日,科学家们开始利用位于瑞士和法国边境的欧洲大型强子对撞机制造小型“宇宙大爆炸”,模拟近140亿年前宇宙形成的瞬间过程。

这是该机器第一次使用铅离子进行对撞,以往实验均使用质子。铅离子和质子统称“强子”,但前者比后者更大、更重。8日开始的实验取名为“爱丽丝”(ALICE),是“大强子对撞实验”的英文缩写。实验第一阶段任务将于今年12月完成。

在全长约27公里的环形轨道内部,两束铅离子束流朝着相反的方向前进,它们每运行一圈,就会获得更多的能量,速度也随之增加。对撞瞬间产生的高温相当于太阳核心温度的10万倍,即10万亿度。据信这个温度就是137亿年前宇宙大爆炸刚刚发生后百万分之几秒内的温度。在这一温度下将产生“夸克—胶子等离子体”。现有物理学理论认为,宇宙诞生后的百万分之几秒内,宇宙中曾存在过一种被称为“夸克—胶子等离子体”的物质。科学家们希望通过迷你“宇宙大爆炸”实验,解开宇宙形成之谜。

近日,中国宣称要建造世界上最大的大型强子对撞机,其规模要超越LHC,但是对于这一建造计划,国际知名的美籍华裔物理学家杨振宁先生曾经是不太支持的。

但是王义芳坦言项目的施工可能会从2022年开始,如果世界各地的朋友感兴趣的话,只要项目进程顺利,到2030年进行开放是没有问题的。

中国将要建造的对撞机规模可长达100公里,中国的超级粒子对撞机一旦问世,绝对就是世界上最大的粒子对撞机了,不过从造价方面来看,中国对于对撞机技术的研发却是后来居上,因为我国的对撞机造价只是欧洲强子对撞机的一半而已,而我们设备的规模却将近他们的四倍。

然而,杨振宁教授对此反对的原因是性价比。

通常建造这种大型对撞机的预估经费是不够的,极有可能要追加投入。而且建成之后,每年还要投入大量的资金用于设备维护。

中国大型对撞机就像资金黑洞,会把大量的科研经费吸进入,以使其他等待资金投入的科研领域变得捉襟见肘。即便如此巨大的资金投入,在短时间内,中国粒子对撞机也不一定能够取得重大的发现。现在的理论物理学还没有取得实质性的突破,不能给实验指示一个明确的方向,耗费这么多的资金只是去搏一把。

其实对于本项目的建设计划,反对声和赞成声是持平的。对此,你有什么意见和看法呢?

来源:凤凰网科技                                        时间:2018年12月10日

对撞机是一种粒子加速器,可以将正反粒子加速到很高的能量然后让正反粒子迎头相撞。大型粒子对撞机是高能物理实验的最强有力设备,同时也被很多人视为烧钱的无底洞。不仅建造对撞机需要大量的资金,后期的使用及维护也要消耗大量资金,并且对更高能量的追求是粒子物理学家的不懈努力。

电子、质子的尺寸很小,目前实验测量到的它们直径的上限要小于十的负15次方米,要让这样小的粒子迎头相撞,必须将它们限制在很窄的范围内运动。目前世界最大对撞机欧洲大型强子对撞机LHC是设计成环形的,其周长达到了27千米,里面接近光速运动的正反质子流,宽度是在纳米(十的负9次方米)的数量级。仅凭这一点就可以感受到其需要有多么高超的技术,这背后当然也需要有资金去进行技术支撑。

环形对撞机的优势是可以通过改变磁场及电场的强度让粒子在固定的环内多次加速,磁场越强、环的半径越大就越能够将粒子加速到更高的能量。为了获得更强的磁场,需要将一些材料冷却到零下二百余摄氏度,以期用通电后的超导体产生强大的磁场。另外,对撞机的环内还需要保持高真空,还需要对海量的数据进行记录。等等严格要求使得对撞机是一个耗电大户,欧洲大型强子对撞机运行起来耗电功率能够达到200兆瓦。

更可怕的是,粒子物理学家对更高能量对撞机的追求似乎是没有止境的,他们不满足于欧洲大型强子对撞机的能量,还要建造周长达到100千米的超大型对撞机。这台对撞机若是真的建成了,后期维护及使用也是一笔巨大的开支。

对撞机对人类认识物质世界的基本组成发挥过关键的作用,在上帝粒子希格斯粒子被发现后,粒子物理的标准模型取得了巨大的成功。虽然关于希格斯粒子还有很多工作需要去做,不过和之前比起来,高能物理的确是遇到了瓶颈期。一些理论预言的存在与粒子相对应的超对称粒子,并且希望用对撞机发现这样的粒子。可事实上,在大型强子对撞机的实验中根本没有发现过超对称粒子存在的痕迹,几乎宣判了超对称粒子的死刑,这让支持超对称理论的物理学家甚是失望。至于还要不要建造超大型对撞机,支持和反对的还在争论着,我等保持观望即可。

来源:百家号                                        时间: 2019-05-17


推荐阅读:叶紫网